.net core, Cake, Raspberry Pi 3

Running a .NET Core 2 app on Raspbian Jessie, and deploying to the Pi with Cake

I’ve managed to get .NET Core apps running on Windows 10 IoT Core, and on Ubuntu 16.04 (and also Ubuntu MATE), but until recently I’d never tried with Raspbian. I’ve read a few posts from people saying that they couldn’t get it to work, and a couple of nights ago I decided to bite the bullet and give it a go.

There’s a good post here on how to get the .NET Core runtime on a Raspberry Pi running Raspbian, and as always, there are a few tricks to getting things running from scratch. To augment this, I’ve created a “Hello World” application template for .NET Core Raspberry Pi on NuGet which I think will make things easier for the community.

At a very high level, the steps to getting a .NET Core 2 app on Raspbian are:

  • Install Raspbian onto an SD card and insert into your Raspberry Pi 3.
  • Set up SSH and test that you can log into your Raspberry Pi from your development machine.
  • Install .NET Core 2 onto the Raspberry Pi.
  • On your development machine, install the Raspberry Pi C# template for dotnet core.
  • Create a new console application using this template.
  • Deploy this application to your Pi running Raspbian using Cake.

I’ll run through each of these steps below.

Install Raspbian onto an SD card and insert into your Raspberry Pi 3

There are already great explanations of how to install the Raspbian OS onto a Raspberry Pi 3 – many people who have a Pi know how to do this already and I don’t really want to just repeat a well understood process here – so I’ve just put some useful links below:

Set up SSH and test that you can log into your Raspberry Pi from your development machine

Once you’ve set up Raspbian and booted your Pi to the desktop, you’ll need to allow SSH connections. These aren’t enabled by default but it’s very easy to configure this.

First open the main Raspberry Pi menu on your desktop as shown in the image below, and open the Preferences sub-menu to reveal the “Raspberry Pi Configuration” option.


Open the “Raspberry Pi Configuration” option screen, and click on the “Interfaces” tab. There’s lots of useful settings here, but the one we want to enable is SSH – click on the “Enabled” radio button as shown below, and then click on OK. SSH is now enabled on your Pi.


You’ll need to find the IP address of your Raspberry Pi – I think the easiest way is to open a terminal on your Pi and type:

hostname -I

This tells me that my Pi has the IP address

Now we need to check you can log in from your development machine. I personally find it’s easiest to use PuTTY to do this. I’ve blogged about installing PuTTY before so I won’t repeat it all here – but a few tips are:

This bit is really important: When you install PuTTY using the installer, it ships with a couple of other programs – pscp.exe and plink.exe, which live in the same directory as putty.exe. You’ll need both of these to deploy the code to the Pi. Pscp.exe allows you to copy files from Windows to Linux, and plink allows you to remotely change permissions on the files you deploy.

It also makes life easier to add the putty installation directory to your machine’s path. If Cake doesn’t know where pscp and plink are on your machine, then you’ll probably see and error about unknown executables during deployment.

So open PuTTY, enter the Pi’s IP address and select the “Connection Type” to be SSH, as shown below:


When you click Open, a command prompt should open where you can type the username and password for the Pi 3.


The default username and password combo for Raspbian is “pi” and “raspberry“, and you should change the default password as soon as possible.

Install .NET Core 2 onto the Raspberry Pi

There’s a straightforward set of commands that you can run through PuTTY to install .NET Core 2 onto your Pi running Raspbian – I’ve written them below:

# Update the Raspbian Jessie install
sudo apt-get -y update

# Install the packages necessary for .NET Core
sudo apt-get -y install libunwind8 gettext

# Download the nightly binaries for .NET Core 2
wget https://dotnetcli.blob.core.windows.net/dotnet/Runtime/release/2.0.0/dotnet-runtime-latest-linux-arm.tar.gz

# Create a folder to hold the .NET Core 2 installation
sudo mkdir /opt/dotnet

# Unzip the dotnet zip into the dotnet installation folder
sudo tar -xvf dotnet-runtime-latest-linux-arm.tar.gz -C /opt/dotnet

# set up a symbolic link to a directory on the path so we can call dotnet
sudo ln -s /opt/dotnet/dotnet /usr/local/bin

Now you can test this install by running the dotnet –info command to see the version installed on Raspbian.


On your development machine, install the Raspberry Pi C# template

Now that we have .NET Core 2 installed on our Raspbian, we can go back to our development machine to create an application to run on the Pi.

First, install the template for creating Raspberry Pi applications

 dotnet new -i RaspberryPi.Template::*

This will create a new template available to dotnet core – you can list them all with the command:

dotnet new --list

And in the screenshot below, you can see there is now a new template called “Empty .NET Core IoT Project”, highlighted in red below.


Create a new console application using this template

It’s really easy to create a new console application now – just run the command below (obviously my application is called “HelloRaspbian”, but yours could be something different):

dotnet new coreiot -n HelloRaspbian

When you browse to this new application folder using your preferred development tool (mine is VSCode), you’ll see some files – we need to make a couple of changes.

First, run the command below to pull down the latest Cake build PowerShell file:

Invoke-WebRequest http://cakebuild.net/download/bootstrapper/windows -OutFile build.ps1

This command is also in the README.txt file which comes packaged with the application.

Now, open the build.cake file and you’ll see some defaults at the top of the file:

// ARGUMENTS (WITH DEFAULT PARAMETERS FOR LINUX (Ubuntu 16.04, Raspbian Jessie, etc)
var runtime = Argument("runtime", "linux-arm");
var destinationIp = Argument("destinationPi", "<>");
var destinationDirectory = Argument("destinationDirectory", @"<>");
var username = Argument("username", "<>");
var executableName = Argument("executableName", "HelloRaspbian");

Replaced those placeholders with the correct environment variables – I’ve shown my own settings below:

// ARGUMENTS (WITH DEFAULT PARAMETERS FOR LINUX (Ubuntu 16.04, Raspbian Jessie, etc)
var runtime = Argument("runtime", "linux-arm");
var destinationIp = Argument("destinationPi", "");
var destinationDirectory = Argument("destinationDirectory", @"/home/pi/DotNetConsoleApps/RaspbianTest");
var username = Argument("username", "pi");
var executableName = Argument("executableName", "HelloRaspbian");

I’ve created a folder on the Pi to deploy my application to, using the command below at the PuTTY SSH prompt at my home directory (/home/pi/).

mkdir -p DotNetConsoleApps/RaspbianTest

Deploy this application to your Pi running Raspbian using Cake

Once I’ve replaced the placeholders in my Cake file, the only thing left to do is run the build.ps1 file from a PowerShell prompt.


To test this, go back to the PuTTY SSH prompt and navigate to your home directory and run:


And you’ll get a text output saying “Hello Internet of Things!”


Wrapping up

I hope this post is useful to anyone trying to get a C# console application running on Raspbian. I think Raspbian is the default OS for Raspberry Pi users, so this should open up many development opportunities. My Raspberry Pi template makes creating the default console application easier, and Cake is a brilliant way to orchestrate the deployment process (rather than dragging and dropping files using tools like WinSCP, and having to change file permission manually). I’ll be blogging more on the future on deploying IoT applications to this platform.

I’ve written a few posts now about how to deploy C# Raspberry Pi applications to Windows 10 IoT Core, Ubuntu, and Raspbian (all using Cake as the orchestration tool) – next time I’ll write about how to use Cake to automatically build a UWP AppxBundle and deploy that AppxBundle to Windows 10 IoT Core.

About me: I regularly post about .NET – if you’re interested, please follow me on Twitter, or have a look at my previous posts here. Thanks!

.net, .net core, Raspberry Pi 3

Automating .NET Core deployments to different platforms with Cake

Recently I’ve been using Cake to automate code deployments to Windows and Ubuntu devices.

Since .NET Core 2 became available, I’ve been able to write C# applications to work with devices which can host different operating systems – specifically the Raspberry Pi, where I’ve been targeting both Windows 10 IoT Core and Ubuntu 16.04 ARM.

I can deploy my code to hardware and test it there because I own a couple of Pi devices – each running one of the operating systems mentioned above. Each operating system requires code to be deployed in different ways:

  • The Windows 10 IoT Core device just appears on my home workgroup as another network location, and it’s easy to deploy the applications by copying files from my Windows development machine to a network share location.
  • For Ubuntu 16.04 ARM, it’s a bit more complicated – I need to use the PuTTY secure client program (PSCP) to get files from my Windows development machine to the device running Ubuntu, and then use Plink to make application files executable.

But I’ve not really been happy with how I’ve automated code deployment to these devices. I’ve used Powershell scripts to manage the deployment – the scripts work fine, but I find there’s a bit of friction when jumping from programming C# to Powershell, and some of dependencies between scripts are not really intuitive.

It’s also a bit difficult to explain to people how to use the scripts, and that’s always a sure sign of a code smell.

Recently I’ve found a better way to manage my build and deployment tasks. At my local .NET user group, we had a demonstration of Cake which is a tool that allows me to orchestrate my build and deployment process in C#. It looked like it could help remove some of my deployment issues – and I’ve written about my experiences with it below.

Getting started

There’s lots more detail on how to get started in the CakeBuild.net website here, but I’ll run through the process that I followed.

Create a project

I’ve previously created a simple project template for a Raspberry Pi which is in a custom nuget package (I’ve written more about that here). You can install the template from nuget by running the command below.

dotnet new -i RaspberryPi.Template::*

This creates a simple hello world application targeting the .NET Core 2 framework.

dotnet new coreiot -n SamplePi

You don’t have to create a project for a Raspberry Pi to follow along with this post – you could just use the regular dotnet command for a new console project:

dotnet new console -n HelloWorld

Create the bootstrapper script

After the project was created, I opened the project folder in VSCode, opened the Powershell terminal, and ran the code below.

Invoke-WebRequest http://cakebuild.net/download/bootstrapper/windows -OutFile build.ps1

This creates a new file in the root of my project called “build.ps1“. It won’t do anything useful yet until we’ve defined our build and deployment process (which we’ll do in the next few sections) – but this bootstrapping script takes care of lots of clever things for us later. It verifies our build script compiles, and it’ll automatically pull down any library and plugin dependencies we need.

Create a Cake build script

The build script – called build.cake – will contain all of the logic and steps needed to build and deploy my code. There’s already an example repository on GitHub which has a few common tasks already. Let’s use the script in that sample repository as our starting point and download it to our project using the PowerShell script below.

Invoke-WebRequest https://raw.githubusercontent.com/cake-build/example/master/build.cake -OutFile build.cake

At this point, if you’re using VSCode, your project should look something like the image below.


Once you’ve loaded the example project’s build script – you can see it here – there’s a few things worth noting:

  • The build script uses C# (or more specifically, a C# domain specific language). This means there’s less friction between creating functional code in C# and orchestrating a build and deployment process in Cake. If you can write code in C#, you’ve got all the skills necessary to build and deploy your code using Cake.
  • Each section of the build and deployment process is nicely separated into logical modules, and it’s really clear for each step what tasks need to complete before that step can start. And because the code written in a fluent style, this means that clarity is already baked into the code.
  • The script shows how we can process arguments passed to the build script:
var target = Argument("target""Default");

The Argument method defines a couple of things:

  1. “target” is the name of the parameter passed to the build.ps1 script
  2. “Default” is the value assigned to the C# target variable if nothing is specified.

So we could get our build script to use something different to the default value using:

.\build.ps1 -target Clean // this would run the "Clean" task in our script, and all the tasks it depends on.

Customizing the build.cake script

Of course this build.cake file is just a sample to help me get started – I need to make a few changes for my own .NET Core 2 projects.

The build and deployment steps that I need to follow are listed below:

  • Clean the existing binary, object and publish directories
  • Restore missing nuget packages
  • Build the .NET Core code
  • Publish the application (targeting Windows or Ubuntu operating systems)
  • Deploy the application (targeting Windows or Ubuntu operating systems)

I’m going to write a different Cake task for each of the steps above.

Modify the build.cake script to clean the build directories

This is a very simple change to the existing build.cake file – I can specify the binary, object and publish directories using C# syntax, and then make a minor change to the task called “Clean” (which already exists in the build.cake file we created earlier).

var binaryDir = Directory("./bin");
var objectDir = Directory("./obj");
var publishDir = Directory("./publish");

// ...
    .Does(() =>

Modify the build.cake script to restore missing nuget packages

Again, there’s a task already in the build.cake file which could do this job for us called “Restore-nuget-packages”. This would work, but I’d like to clearly signal in code that I’m using the normal commands for .NET Core projects – “dotnet restore”.

DotNetCoreRestore is a method built into Cake (see the source code here).

I created the C# variable to hold the name of my project (csproj) file, and can call the task shown below.

var projectFile = "./SamplePi.csproj";

// ...
    .Does(() =>

Notice how I’ve specified a dependency in the code, which requires that the “Clean” task runs before the “Restore” task can start.

Modify the build.cake script to build the project

The methods that Cake uses to restore and build projects are quite similar – I need to specify C# variables for the project file, and this time also what version of the .NET Core framework that I want to target. Of course this task depends on the “Restore” task we just created – but notice that we don’t need to specify the dependency on “Clean”, because that’s automatically inferred from the “Restore” dependency.

We also need to specify the framework version and build configuration – I’ve specified them as parameters with defaults of “.netcoreapp2.0” and “Release” respectively.

var configuration = Argument("configuration""Release");
var framework = Argument("framework""netcoreapp2.0");

// ...
    .Does(() =>
        var settings = new DotNetCoreBuildSettings
            Framework = framework,
            Configuration = configuration,
            OutputDirectory = "./bin/"
        DotNetCoreBuild(projectFile, settings);

Modify the build.cake script to publish the project

This is a little bit more complex because there are different outputs depending on whether we want to target Windows (the win10-arm runtime) or Ubuntu (the ubuntu.16.04-arm runtime). But it’s still easy enough to do this – we just create an argument to allow the user to pass their desired runtime to the build script. I’ve decided to make the win10-arm runtime the default.

var runtime = Argument("runtime""win10-arm");

// ...
    .Does(() =>
        var settings = new DotNetCorePublishSettings
            Framework = framework,
            Configuration = configuration,
            OutputDirectory = "./publish/",
            Runtime = runtime
        DotNetCorePublish(projectFile, settings);

Modify the build.cake script to deploy the project to Windows

I need to deploy to Windows and Ubuntu – I’ll consider these separately, looking at the easier one first.

As I mentioned earlier, it’s easy for me to deploy the published application to a device running Windows – since the device is on my network and I know the IP address, I can just specify the IP address of the device, and the directory that I want to deploy to. These can both be parameters that I pass to the build script, or set as defaults in the build.cake file.

var destinationIp = Argument("destinationPi""");
var destinationDirectory = Argument("destinationDirectory"@"c$\ConsoleApps\Test");
// ...
    .Does(() =>
        var files = GetFiles("./publish/*");
        var destination = @"\\" + destinationIp + @"\" + destinationDirectory;
        CopyFiles(files, destination, true);

Modify the build.cake script to deploy the project to Ubuntu

This is a bit more complex – remember that deploying from a Windows machine to an Ubuntu machine needs some kind of secure copy program. We also need to be able to modify the properties of some files on the remote device to make them executable. Fortunately a Cake add-in already exists which helps with both of these operations!

There are hundreds of add-ins for Cake – you can find more of them here and search the API here.

First, let’s structure the code to differentiate between deployment to a Windows device and deployment to an Ubuntu device. It’s easy enough to work out if we’re targeting the Windows or Ubuntu runtimes by looking at the start of the runtime passed as a parameter. I’ve written the skeleton of this task below.

    .Does(() =>
        var files = GetFiles("./publish/*");
        if (runtime.StartsWith("win"))
            var destination = @"\\" + destinationIp + @"\" + destinationDirectory;
            CopyFiles(files, destination, true);
            // TODO: logic to deploy to Ubuntu goes here

I found an add-in for securely copying files called Cake.Putty – you can read more about the Cake.Putty library on Github here.

All we need to do to get Cake to pull the necessary libraries and tools is add one line to our build.cake script:

#addin "Cake.Putty"

That’s it – we don’t need to explicitly start any other downloads, or move files around – it’s very similar to how we’d include a “using” statement at the top of a C# class to make another library available in the scope of that class.

So next we want to understand how to use this add-in – I’ve found there’s good documentation on how to use the methods available in the plugin’s GitHub repository here.

From the documentation on how to use the PSCP command in the add-in, I need to pass two parameters:

  • a string array of file paths as the first parameter, and
  • the remote destination folder as the second parameter.

The second parameter is easy, but the first one is a bit tricky – there’s a function built into Cake called GetFiles(string path) but this returns an IEnumerable collection, which obviously is different to a string array – so I can’t use that.

But this is a great example of an area where I’m really able to take advantage of being able to write C# in the build script. I can easily convert the IEnumerable collection to a string array using LINQ, and pass this as the correctly typed parameter.

var destination = destinationIp + ":" + destinationDirectory;
var fileArray = files.Select(m => m.ToString()).ToArray();
Pscp(fileArray, destination, new PscpSettings
        SshVersion = SshVersion.V2,
        User = username

So now the deployment code has a very clear intent and easily readable to a C# developer – a great advantage of using Cake.

Finally, I can use Plink (also available in the Cake.Putty add-in) to make the application executable on the remote machine – again we need to specify the file to make executable, and the location of this file, which is straightforward.

var plinkCommand = "chmod u+x,o+x " + destinationDirectory + "/SamplePi";
Plink(username + "@" + destination, plinkCommand);

So now our deployment task is written in C#, and can deploy to Windows or Ubuntu devices, as shown below.

    .Does(() =>
        var files = GetFiles("./publish/*");
        if (runtime.StartsWith("win"))
            var destination = @"\\" + destinationIp + @"\" + destinationDirectory;
            CopyFiles(files, destination, true);
            var destination = destinationIp + ":" + destinationDirectory;
            var fileArray = files.Select(m => m.ToString()).ToArray();
            Pscp(fileArray, destination, new PscpSettings
                    SshVersion = SshVersion.V2,
                    User = username
            var plinkCommand = "chmod u+x,o+x " + destinationDirectory + "/SamplePi";
            Plink(username + "@" + destination, plinkCommand);

I’ve noticed that this add-in doesn’t handle file paths which have spaces in them – but it works if the full file path has no spaces.

One last thing – I’ve included the parameters for a Windows deploy all the way through this post – however, if I wanted to change these, I could override the defaults by passing them to the ScriptArgs switch using a command like the one below:

       -ScriptArgs '--runtime=ubuntu.16.04-arm', 
      -target Publish

I can pass values to the “-target” and “-configuration” parameters directly because they’re explicitly mentioned in the build.ps1 script – the rest have to be passed as a comma separated list of name-value pairs to the “-ScriptArgs” parameter. There’s a bit more on passing parameters to the build script on StackOverflow here.

I’ve pushed my new deployment scripts to GitHub here and the rest of this sample project to here.

Wrapping up

Cake allows me to write my build and deployment scripts in C# – this makes it much easier for developers who are familiar with C# to write automated deployment scripts. It also makes the dependencies between tasks really clear.

I’m much happier using this deployment mechanism rather than the one I had previously.  Cake especially helped me to deploy from a Windows development environment to a device running an Ubuntu operating system – and the principles I’ve learned and written about here don’t just apply to Raspberry Pi devices, I could use them if I wanted to develop a website in .NET Core on my Windows machine, and deploy to a web server running Linux.

Footnote: I’ve written about an improvement to the deployment process to Windows 10 IoT Core here – robocopy makes things much faster

About me: I regularly post about .NET – if you’re interested, please follow me on Twitter, or have a look at my previous posts here. Thanks!

.net, .net core

Contributing to the .NET Core SDK source code for the first time, and how OSS helped me

The .NET Core source code has been open sourced on GitHub for a while now, and the community is free to raise issues and submit pull requests – though I’d not really expected that I’d ever actually need to. That’s mainly because I always expect that thousands of other talented developers will have tested the code paths I’m working with and found (and solved) those issues before me.

But shortly after I installed .NET Core 2.0.0 Preview 1, I found that all my .NET Core projects that I had written for Windows 10 IoT Core suddenly stopped working – and the reason was that the executable file wasn’t being generated any more after I published the project.

I tested the hell out of this – I originally suspected that I had done something wrong or different, and I really didn’t want to report an issue and then find I was the one who had actually made a mistake. But I eventually concluded that something had changed in the code, so I raised a bug under the title “Publishing to win10-arm or win8-arm doesn’t generate an exe file for a Console application“, and this ultimately led to me committing some test code to the .NET Core codebase.

So the fact that .NET Core is completely open source and receiving community contributions suddenly became extremely relevant to me – previously I’d have just had to suffer the problem.

None of this stuff I write about below is a particularly big deal – just a part of software development – but dipping my toe into the waters of a massively public open source project was, well, a bit nerve wracking.

In some ways I felt like when I start a new job, where I’ve joined a team that has patterns and practices that I’m not entirely familiar with – I’m always worried I’ll do something that makes things harder for other developers, invokes justified wrath… and reminds me that it’s only Imposter Syndrome if I’m not actually stupid.

None of the stuff I was worried about happened – and was it was never going to happen. The .NET development team were super helpful, open, friendly, and encouraged me right from the start – and there were safety nets all along the way to stop anything bad happening. They even suggested a workaround to solve my problem on the same day I raised the issue, which massively helped me before the resolution was merged in.

I’ve written about my experiences below – things I got right, and things I got wrong – hopefully this will be useful to other developers thinking about putting their toe in the same waters.

Tips for a good issue report

The first part of this was writing up the issue – I think that there are essentially three parts to a good issue report:

  • Steps to recreate the issue
  • Actual behaviour
  • Expected behaviour – don’t forget to say why you think this is the expected behaviour.

What sort of things do I need to do when submitting a pull request to the .NET Core repositories?

I wasn’t the developer who actually solved the issue – the .NET team get the credit for that – but I did see an opportunity to write a test to make sure the issue didn’t reoccur, and I submitted a PR for that code change.

First, fork the .NET Core SDK repository

This bit’s really easy – just click on the “Fork” button in the top right corner of the GitHub repository. This’ll create a fork of the original Microsoft source code in your own GitHub profile.

Clone the repo locally, and make sure you choose the correct branch to code against

I used TortoiseGit to clone the repository to my local development machine, and just started coding – and that turned out to be a bit too quick on the draw. I don’t think this is written down anywhere, but I should have targeted the release/2.0.0 branch.

How do I choose the right branch? I think the best way is to look at some recently closed pull requests, and see where the other developers are pushing their code.

With TortoiseGit, it’s easy to switch branches.

  • Right click on the root of the repo you’ve cloned, select “TortoiseGit > Switch/Checkout”.


  • A window will appear, where you can select the branch you want from a dropdown list. In the image below, you can see I’ve selected the release/2.0.0 branch. Click OK to switch your local repo to the code in this branch.


I initially (but wrongly) wrote my code against the default branch – in some repositories that’s possibly ok, but at the time of writing, the best branch to target in the .NET SDK repo is release/2.0.0. By the time I realised I should have targeted the release/2.0.0 branch and tried to switch to it, GitHub invited me to resolve lots of conflicts in files I hadn’t touched. Rather than trying to rebase and introducing lots of risk, I just closed the original pull request, selected the correct branch, and opened a new pull request which included my code change. Don’t make the same mistake I did!

Test that you can build the branch before making any changes

Once your locally cloned repository targets the correct branch, you should try building the code before making any changes. If it doesn’t build at this point or tests fail, then at least you know the problem isn’t caused by something you did.

In the root folder of the source for .NET Core’s SDK, there are three files which can be used to build the code:

  • build.cmd
  • build.ps1
  • build.sh

Open a command prompt, and run whichever one of the three options that is your favourite.

If you find that the code doesn’t build or the tests don’t pass, check the build status on the repo’s home page.

Make your changes, commit them, and push the changes to the right branch in your remote fork on GitHub

Don’t forget your unit tests, make sure everything builds, and comment your changes appropriately.

Now create a pull request

From your forked repository, hit the “New Pull Request” button. Here are a few things that I think are useful to think about:

  • You’ll need to enter a comment – make sure it’s a useful one.
  • Describe why your change is valuable – does it fix an issue? Is it a unit test, related to another pull request?
  • If you can, link to an issue or pull request in the comment to give the reviewers some context.
  • I try not to submit a pull request which changes many files – lots of changes make it difficult to review. If you have to change lots of files, try to explain why it wasn’t possible to separate this out into smaller chunks.
  • And remember to open the pull request against the correct branch!


What happens when I submit the pull request?

Once you submit your first pull request, it’ll immediately be assigned a label “cla-required” by the dnfclas bot.


cla is short for “contribution licence agreement“.

dnfclas means “dot net foundation contribution licence agreement” and is the Pull Request Bot.

To proceed beyond this point, you need to click on the link to https://cla2.dotnetfoundation.org to sign a Contribution Licence Agreement. When you click on that link, you’ll be redirected to a page like this.


Sign in using your GitHub credentials, and you’ll be invited to enter some details and sign the agreement. If you sign it, you’ll eventually be shown a page like the one below.


At this point, the dnfclas bot automatically recognises that you’ve signed the agreement (you don’t need to tell it), and it updates the label in the pull request from “cla-required” to “cla-signed”. You’ll see this on your pull request as an update, similar to the one below.


As you might expect, there’s a series of integration environments where your pull request will be tested. For the .NET Core SDK continuous integration process, there are presently 10 environments where code is automatically tested:

  • OSX10.12 Debug
  • OSX10.12 Release
  • Ubuntu14.04 Debug
  • Ubuntu14.04 Release
  • Ubuntu16.04 Debug
  • Ubuntu16.04 Release
  • Windows_NT Debug
  • Windows_NT Release
  • Windows_NT_FullFramework Debug
  • Windows_NT_FullFramework Release

There are lots of dotnet repositories, and an issue which manifests itself in one repo might have the root cause in another one – and this was the case for me. The issue that I observed in the SDK actually started in the .NET CoreFx repository.

It takes a while for fixes in one repo to flow across to the other, so if you submit a unit test to one repo for a fix that lives somewhere else, the test might fail for a while – and that’ll stop it being merged in immediately.

So if you’re only submitting tests, expect that all the checks will fail until the code you’re covering with your unit test flows across to the .NET Core SDK continuous integration environment.


Once the fixed code has flowed through, you’ll see this (assuming your code works…):


The .NET Team will choose a reviewer for you – you don’t need to choose anyone

Finally – and probably most importantly – someone from the .NET Core SDK team will review your code. I think it’s mandatory (as well as courteous) to address any comments from your reviewer – these are helpful pointers from a team of super smart people who care about good code.

Other gotchas

One thing that caught me out was that GitHub marked some of the review comments as “outdated” (as shown below). I should have clicked on these – if I had, I would have seen a few comments that I hadn’t addressed.


Another thing was I wish I had a copy of Resharper on my development machine – one of the review comments was that I had left an unused variable in my code. Resharper would have caught this error for me.

Wrapping up

So, much to my surprise, I’ve contributed to the .NET Core codebase – albeit in a very small way!


In summary, I was a bit nervous about submitting my first pull request to the .NET Core SDK repository – but I decided to create a simple test which covered a bug fix from the .NET team. Apart from signing a contribution licence agreement, this was a pretty standard process of submitting a pull request for review and automated testing. One really nice thing is that changes are tested not only against Windows, but also different versions of Ubuntu and OSX.  Also, if you’re about to submit your own pull request to a .NET Core repo, I’d recommend checking out other pull requests first as a guideline – and don’t forget to look at what branch the developers are merging to.

Hopefully this description of my experiences will help other developers thinking of contributing feel a bit more confident. I’d recommend to anyone thinking of making their first contribution, choose something small – it’ll help you get familiar with the process.

About me: I regularly post about .NET – if you’re interested, please follow me on Twitter, or have a look at my previous posts here. Thanks!

.net, .net core, Raspberry Pi 3

Using .NET Core 2 to read from an I2C device connected to a Raspberry Pi 3 with Ubuntu 16.04

I’ve bought a lot of hardware devices – often I2C devices – to attach to my Raspberry Pi devices over the years – things like thermometers, gyroscopes, light intensity sensors and so on. And usually there’s a library supplied by the manufacturer of a device breakout board which shows me how to use the device in the .NET framework.

But what if there isn’t a library for my device? Or what if the library isn’t in .NET – or if it is in .NET, what if it isn’t compatible with .NET Core 2? I wanted to know if I could find a way to still read from my I2C devices while coding from scratch using .NET Core 2, and not depend on someone else writing the library for me.


I’ve written a couple of posts recently (one for Windows 10 IoT Core and one for Ubuntu 16.04) about how to create simple platform invocation service (also known as PInvoke) applications in .NET Core 2 – these posts describe calling native methods to capitalise some text, and deploy the application to a Raspberry Pi 3.

So since I found that it was so easy to use PInvoke with .NET Core and Ubuntu on the Raspberry Pi, I thought I’d try something more ambitious – accessing hardware device registers over an I2C bus using native libraries.

What is I2C?

I2C is a protocol often used to connect peripheral hardware devices (such as a thermometer) to a processor device such as a Raspberry Pi or an Arduino. Typically I find there are four wires needed to connect the Raspberry Pi to an I2C device – one for power (usually 3.3V or 5V), one for ground, one for a serial data line (sometimes labelled as SDA), and one for a serial clock line (sometimes labelled SCL).

As a software developer, I don’t need to worry too much about these wires – I just need to connect the correct 5V/3.3V and 0V wires, and connect the SDA wire to Pin 3 on my Raspberry Pi, and connect the SCL wire to Pin 5 on my Pi.

How can I set up my Ubuntu Raspberry Pi 3 to use I2C?

My Ubuntu installation on my Raspberry Pi 3 didn’t have I2C enabled out of the box – I needed to make a few simple changes.

  • I opened the file “/etc/modules” as sudo and added a couple of lines to the end:
  • I opened the “/boot/config.txt” file as sudo and added a couple of lines to the end:
  • I then ran the command below:
sudo apt-get install -y i2c-tools

At this point I was able to run the command below:

i2cdetect -y 1

This command scans the I2C bus for attached devices. The “-y” switch means it doesn’t prompt me to type ‘Yes’ to confirm, and the “1” means I’m scanning the I2C-1 bus.


This showed me that my I2C bus is configured correctly, and highlighted that an external device is connected to my I2C-1 bus, and is accessable at address 0x48.

The device is actually a TMP102 temperature sensor – which I’ve written about before when I used a UWP application to read from this device.

How can I read from a device connected to my Raspberry Pi 3?

I happen to know for this device that the temperature is written into the first two bytes of the TMP102 device (from the datasheet), so I want my code to read these bytes.

Once I’ve connected my I2C device correctly to my Raspberry Pi 3, there are three steps to the code:

  • Open the I2C bus,
  • Specify the address of the device we want to control and read from, and
  • Read from the device.

Whereas this isn’t possible in standard .NET Core 2, there are three functions available in the GNU C library which will do this for us.

I’ve pasted the invocation signatures below to access these functions.

[DllImport("libc.so.6", EntryPoint = "open")]
public static extern int Open(string fileName, int mode);
[DllImport("libc.so.6", EntryPoint = "ioctl", SetLastError = true)]
private extern static int Ioctl(int fd, int request, int data);
[DllImport("libc.so.6", EntryPoint = "read", SetLastError = true)]
internal static extern int Read(int handle, byte[] data, int length);

So we can open the I2C-1 bus with the .NET code below:

int OPEN_READ_WRITE = 2; // constant, even for different devices
var i2cBushandle = Open("/dev/i2c-1", OPEN_READ_WRITE);

We can control the I2C slave device with address 0x48 on the I2C-1 device with the .NET code below:

int I2C_SLAVE = 0x0703; // constant, even for different devices
int registerAddress = 0x48; // different address for each I2C device
var deviceReturnCode = Ioctl(i2cBushandle, I2C_SLAVE, registerAddress);

And finally we can read two bytes into a byte array from the device with the code below:

var deviceDataInMemory = new byte[2];
Read(i2cBushandle, deviceDataInMemory, deviceDataInMemory.Length);

Putting it all together

First install .NET Core 2 using the executable from here, and then install the template for .NET Core 2 IOT projects using the command below:

dotnet new -i RaspberryPi.Template::*

Next create a project (for the TMP102 device) using the command

dotnet new coreiot -n Tmp102

Open the project, and replace the code in the Program.cs file with the code below:

using System;
using System.Runtime.InteropServices;
namespace RaspberryPiCore
    class Program
        private static int OPEN_READ_WRITE = 2;
        private static int I2C_SLAVE = 0x0703;
        [DllImport("libc.so.6", EntryPoint = "open")]
        public static extern int Open(string fileName, int mode);
        [DllImport("libc.so.6", EntryPoint = "ioctl", SetLastError = true)]
        private extern static int Ioctl(int fd, int request, int data);
        [DllImport("libc.so.6", EntryPoint = "read", SetLastError = true)]
        internal static extern int Read(int handle, byte[] data, int length);
        static void Main(string[] args)
            // read from I2C device bus 1
	    var i2cBushandle = Open("/dev/i2c-1", OPEN_READ_WRITE);
            // open the slave device at address 0x48 for communication
	    int registerAddress = 0x48;
	    var deviceReturnCode = Ioctl(i2cBushandle, I2C_SLAVE, registerAddress);
            // read the first two bytes from the device into an array
	    var deviceDataInMemory = new byte[2];
	    Read(i2cBushandle, deviceDataInMemory, deviceDataInMemory.Length);
            Console.WriteLine($"Most significant byte = {deviceDataInMemory[0]}");
            Console.WriteLine($"Least significant byte = {deviceDataInMemory[1]}");

Now build and publish using the commands below:

dotnet build
dotnet publish -r ubuntu.16.04-arm

And copy the published code (inside the “.\bin\Debug\netcoreapp2.0\ubuntu.16.04-arm\publish\” directory) to your Raspberry Pi 3 running Ubuntu.

Now if you run the Tmp102 executable (you might need to chmod it to have execute privileges), it’ll write the contents of the first two bytes to the console, which proves we’ve successfully connected to the device over the I2C bus and read from it.


Wrapping up

There’s obviously a lot more to I2C than this post, but it proves that we can use PInvoke and .NET Core 2 to read from devices using the I2C protocol. With this knowledge, I’m not dependent on hardware vendors supplying working .NET code for my I2C devices (although that obviously makes things easier!)

About me: I regularly post about .NET – if you’re interested, please follow me on Twitter, or have a look at my previous posts here. Thanks!

.net, .net core, Raspberry Pi 3

Using PInvoke with .NET Core 2 and Ubuntu 16.04 on the Raspberry Pi 3

I’ve written previously about how to use PInvoke with .NET Core 2 on a Raspberry Pi 3 running Windows 10 IoT Core – I tested it with a very simple example where I converted some text to upper case using the CharUpper method in the user32.dll library. I was able to invoke the CharUpper method using the code below:

[DllImport("user32.dll", CharSet = CharSet.Auto)]
static extern char CharUpper(char character);

You can see the full code at Github here.

I decided to see if I could repeat this simple example on Ubuntu using the built in libraries – and found that it is actually really easy to use PInvoke with .NET Core on Ubuntu also. I’ll run through the steps to repeat this on your own Raspberry Pi 3 running Ubuntu 16.04.

  • Install .NET Core 2 – you can get the installer from here.
  • Create a console app for the Raspberry Pi 3 – you can install a template using the code below:
dotnet new -i RaspberryPi.Template::*
  • And then you can create a new project using the command below:
dotnet new coreiot -n RaspberryPi_PInvoke
  • In the generated project, replace the code in Program.cs with the code below. I’ve highlighted the key part of the code in red – this uses the GNU C library, libc. I import the method “toupper”, but alias it as CharUpper which is the name of the function I used in the previous post.
using System;
using System.Runtime.InteropServices;
namespace RaspberryPi_PInvoke
    class Program
        [DllImport("libc.so.6", EntryPoint = "toupper")]
        private static extern int CharUpper(int c);
        static void Main(string[] args)
            var textToChange = "Hello Internet of Things!";
            var inputCharacterArray = textToChange.ToCharArray();
            // array of chars to hold the capitalised text
            var outputCharacterArray = new char[inputCharacterArray.Length];
            for(int i = 0; i < inputCharacterArray.Length; i++) 
                var charToByte = (byte)inputCharacterArray[i];
                outputCharacterArray[i] = (char)CharUpper(charToByte);
            Console.WriteLine($"Original text is {textToChange}");
            Console.WriteLine($"Changed text is {new string(outputCharacterArray)}");
  • Now build this using the command:
dotnet build
  • And publish for Ubuntu using the command:
dotnet publish -r ubuntu.16.04-arm
  • Finally, deploy this to your Raspberry Pi 3 running Ubuntu.

I use pscp to copy files from my Windows machine to the Pi 3 running Ubuntu, but you could also use rsync from Bash in Windows 10. Remember to make the file you need to run (RaspberryPi_PInvoke) executable on the Pi 3 using chmod.

When you run this application through a terminal, you’ll see that it converts the text “Hello Internet of Things!” to upper case.


Wrapping up

This post is very similar to a post I wrote previously about using PInvoke with Windows 10 IoT Core on the Raspberry Pi 3 – except this time, I use a function from the GNU C library, libc. This is an incredibly rich source of code, and I’ll write next time about how I can use this to access the I2C bus.

.net, .net core, Raspberry Pi 3

Controlling GPIO pins using a .NET Core 2 WebAPI on a Raspberry Pi, using Windows 10 or Ubuntu

Previously I’ve written about creating a .NET Core 2 Web API and hosting it on a Raspberry Pi 3, and this time I’ll expand on this work to interact with GPIO pin logic levels.

This is the latest in a series of posts helping developers write .NET Core 2 code to interact with IoT hardware, in a way which is agnostic towards the device operating system. I’ve written a few bits and pieces about how to change GPIO pin status with a console application previously – but with a WebAPI, we can now control GPIO status with HTTP Post requests. So with this capability, you can imagine how we could control a physical device from something like a browser application, or even a HoloLens or Xbox app.

TL:DR – as usual, the source code is up on GitHub here.

Create the Web API project for the Raspberry Pi

This bit is easy – once you have .NET Core 2 on your machine, just install the template from Nuget using the command below:

dotnet new -i RaspberryPi.WebApi::*

And then pick a folder on your development environment to create a new project called GpioSwitcherWebApio with the command:

dotnet new piwebapi -n GpioSwitcherWebApi

At this point you’ll have all the code you need to run a .NET Core 2 Web API project on your Raspberry Pi.

If you want to read more about this, check out a longer post here.

Create a controller to change pin status

Let’s open our project, and add a dependency on the Bifröst project – this helps us in a couple of ways. We can write the same code to target both Ubuntu and Windows 10 IoT Core devices, and there’s also a Bifröst UWP app that helps us access GPIO hardware on Windows 10 IoT devices. Open up a Package Manager prompt in Visual Studio 2017 and enter:

Install-Package Bifrost.Devices.Gpio.Core -Version 0.0.1
Install-Package Bifrost.Devices.Gpio.Abstractions -Version 0.0.1
Install-Package Bifrost.Devices.Gpio -Version 0.0.2

If you’re not using Visual Studio 2017, you can just modify the GpioSwitcherWebApi.csproj file and add the package references shown below:

    <PackageReference Include="Bifrost.Devices.Gpio" Version="0.0.2" />
    <PackageReference Include="Bifrost.Devices.Gpio.Abstractions" Version="0.0.1" />
    <PackageReference Include="Bifrost.Devices.Gpio.Core" Version="0.0.1" />
    <PackageReference Include="Microsoft.AspNetCore" Version="2.0.0-preview1-*" />
    <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.0.0-preview1-*" />
    <PackageReference Include="Microsoft.Extensions.Logging.Debug" Version="2.0.0-preview1-*" />

Next, we can edit the default ValuesController which comes with the project – I’ve renamed mine to be PinsController.cs, which is a title better suited to the action we’re going to carry out.

I want my controller to have three actions for Ubuntu or Windows IoT devices:

  • Get() – an HttpGet action which returns a list of Gpio pins which are presently exported, and their current status (high/low).
  • Get(int pinId) – an HttpGet action which returns the status of the Gpio pin with the number pinId.
  • SwitchPin(int pinId, int status) – an HttpPost action which allows me to select a GpioPin with number pinId, and set it to a value of status (which is either 1 or 0, corresponding to high or low).

The Bifröst libraries make setting up our controller to modify GPIO pin statuses very easy.

The code below is just an example – obviously in a properly structured application, modifying GPIO pin levels would be managed through an interface to a service layer.

First, we need to instantiate a static instance of the GpioContoller object – so we can add a private member variable and a class constructor, as shown below.

private IGpioController gpioController;
public PinsController()
    Console.WriteLine("In controller - instantiating GpioController instance");
    gpioController = GpioController.Instance;

Next, we need to write the HttpGet action that returns a list of Gpio pins which are presently exported, and their current status. The code below shows the controller action which achieves this, and returns a 200 OK Http code.

public IActionResult Get()
    Console.WriteLine("About to list pin statuses.");
    return Ok(gpioController.Pins);

We also want to be able to find the present status of a Gpio pin by passing the pin number to the HttpGet method, and we can do this with the code below.

public IActionResult Get(int pinId)
    GpioPinValue pinStatus;
    Console.WriteLine("About to get pin status.");
    var pin = gpioController.OpenPin(pinId);
    pinStatus = pin.Read();
    Console.WriteLine("Returning pin status.");
    return Ok(pinStatus.ToString());

Finally, the interesting bit – rather than just reading pin logic levels, I’d like to be able to modify them – I think the most logical Http verb to use here is the HttpPost verb, so I can post values for the pin number I want to change, and the level I want to change it to, using the code below:

public void SwitchPin(int pinId, int status)
    Console.WriteLine("About to change pin status.");
    var pin = gpioController.OpenPin(pinId);
    if (status == 1)
        Console.WriteLine("Going on");
        Console.WriteLine("Going off");

To see the complete controller file already coded, check it out here.

If you’ve followed the steps above correctly, you should be able to build the WebAPI application in your normal way (e.g. in Visual Studio 2017 use Ctrl+Shift+B, or from a terminal in VSCode, execute the dotnet build command.

If you’ve pulled the project from GitHub here, there’s a file named build.ps1 which you can run from a PowerShell prompt to do the build for you. There are other more useful ones generated for publishing and deploying to Ubuntu 16.04 or Windows 10 IoT Core.

Deploying to your Raspberry Pi device

I’ve previously written step by step instructions on how to deploy code to a Raspberry Pi 3 running Ubuntu 16.04 or Windows 10 IoT Core, so I won’t repeat all of that here – the easiest way to do this is just to run the into PowerShell scripts I’ve uploaded to Github, and I briefly cover these below along with the parameters these scripts need to run.

To run these scripts successfully, make sure you’ve switched on your Raspberry Pi 3, logged into the device, and have connected it to your network.

Deploying to Ubuntu 16.04

  • Make sure you’ve got PuTTY installed on your development machine.
  • Get the IP address of your Raspberry Pi 3 (mine is
  • Get the username you logged in with (default is ubuntu).
  • Get the path you want to deploy your WebAPI to (mine is /home/ubuntu/GpioWebAPI)

Using the script hosted here, run the command in PowerShell:

.\deploy-ubuntu.ps1 -ip -username ubuntu -destination /home/ubuntu/GpioWebAPI

The WebAPI binaries will be build and published for an Ubuntu OS, and then copied to your Raspberry Pi.

Deploying to Windows 10 IoT Core

This is a little bit more complex – you have to deploy your WebAPI, and also deploy the Bifröst UWP app (you need the Bifröst UWP app on Windows to allow your .NET Core 2 app to read and change logic levels of your GPIO pins).

First, deploy the Web API application

  • Get the IP address of your Raspberry Pi 3 (mine is
  • The name of the Web API application, which for me is GpioSwitcherWebApi.

Using the script below (you can get a copy from here), run the command to create the destination directory and add a firewall rule:

.\setup-windows.ps1 -ip -applicationName GpioSwitcherWebApi

Now run the script below (you can get a copy from here), which copies the binaries to your Raspberry Pi 3.

.\deploy-windows.ps1 -ip -applicationName GpioSwitcherWebApi

Thanks to wind-rider for their pull request with excellent powershell scripts.

Next, deploy the Bifröst Windows Device Bridge

How to deploy this UWP app is described in detail here, but it’s just a standard UWP app deployment. You can download the code from here, load it into Visual Studio Community 2017, and deploy it to your Raspberry Pi 3 hosting Windows 10 IoT Core.


Start the Kestrel web server to start the Web API

This is straightforward – for a Raspberry Pi hosting Ubuntu 16.04, I ssh in using PuTTY and run:

sudo /home/ubuntu/GpioWebApi/GpioSwitcherWebApi

And for a Raspberry Pi hosting Windows 10 IoT Core, I ssh in using PowerShell, navigate to where deployed the app, and run:


The web server will start up after a few seconds and it’s ready to test.

Testing our Web API by changing GPIO pin logic levels

We can test this really easily by issuing HttpGet or HttpPost requests to our webserver. Let’s test this for Pin 26 on our Raspberry Pi – I’ve connected an LED between Pin 26 and ground.

For my Windows 10 Raspberry Pi, I can just browse to the address:

This will return a JSON list of pins and logic levels (it’s probably an empty list if you’ve not run this before).

To switch a pin on, let’s use a Firefox plug in like HttpRequester.

  • For the URL, enter the URL above (
  • Select the “Parameters” tab (as shown below) and add name-value pairs of:
    • pinId = 26
    • status = 1
  • Now click on the “POST” button

The site responds with a HTTP status of 200 OK, and the logic level of GPIO pin 26.


The logic level is 1, which means the white LED attached to pin 26 will turn on.

Windows 10 Web API - LED On

If we want to find the status of Pin 26 now, we can read it with an HTTP get request of:

As shown below, there’s a GET request which returns a status of 200 OK and a text value of High – which is what we expect as we’ve just turned the pin on.


Finally let’s just issue an HTTP Get request with no pin Id specified to get all statuses – again we receive a 200 OK code and a JSON object listing the open GPIO pin and its status.


For testing Ubuntu the process is identical except for I had to substitute the IP address of my Ubuntu Raspberry Pi (which is Repeating the process above turns on the orange LED attached to the Ubuntu Raspberry Pi (see below)

Raspberry Pi running Ubuntu LED On

Wrapping up

That’s all for this time – we’ve seen how to access GPIO pins from a .NET Core 2 Web API, and deploy that application to a Raspberry Pi 3 running either Windows 10 IoT Core or Ubuntu 16.04. This technique allows us to use the Raspberry Pi’s capabilities from a wider variety of interfaces than just a console – so we could use a browser, or even a HoloLens or Xbox app.

About me: I regularly post about .NET – if you’re interested, please follow me on Twitter, or have a look at my previous posts here. Thanks!

.net, .net core, Powershell, Raspberry Pi 3

Using PInvoke with .NET Core 2 and Windows 10 IoT Core on the Raspberry Pi 3

Since I’ve been kicking the tyres on .NET Core 2 to see what’s possible with the Raspberry Pi 3, I wondered if it was possible to use PInvoke on the Windows 10 IoT Core operating system – and it turns out that it is.

Let’s write a simple console application and deploy it to a Pi 3 to show PInvoke working.

As usual, you can find the finished code on my GitHub repository here.

First, install .NET Core 2

You can get the .NET Core 2 installer from here – remember that this version of .NET Core hasn’t made it to RTM status yet, so you’re playing with code at the bleeding edge. I’ve found it to be pretty stable, but I’m working on a machine which I’m happy to trash and rebuild.


Create a console app for the Raspberry Pi 3

Next, open a PowerShell prompt, and navigate to where you want to create the .NET Core 2 project.

dotnet new -i RaspberryPi.Template::*

This’ll add the template for a .NET Core 2 Console application which targets IoT devices – you can see this in your list of installed templates if you run:

dotnet new --list

You’ll see it in the list, as shown below.


So to create this kind of IoT console application, run:

dotnet new coreiot -n RaspberryPi.PInvoke

This creates a new folder and project called “RaspberryPi.PInvoke”, which presently will just write “Hello Internet of Things!” to the console.

Choose an unmanaged function to call – CharUpper

Let’s change this application to make that text – “Hello Internet of Things!” – become upper case. Inside user32.dll, there is a function called CharUpper which will do exactly that.

Obviously we could just use the “ToUpper()” string method inside managed .NET code to achieve this, but this application is a proof of concept to use PInvoke.

The C# signature for this is below:

[DllImport("user32.dll", CharSet=CharSet.Auto)]
static extern char CharUpper(char character);

So we can modify our very simple program to now become like the code below:

using System;
using System.Runtime.InteropServices;
namespace RaspberryPiCore
    class Program
        [DllImport("user32.dll", CharSet=CharSet.Auto)]
        static extern char CharUpper(char character);
        static void Main(string[] args)
            var textToChange = "Hello Internet of Things!";
            var inputCharacterArray = textToChange.ToCharArray();
            // array of chars to hold the capitalised text
            var outputCharacterArray = new char[inputCharacterArray.Length];
            for(int i = 0; i < inputCharacterArray.Length; i++) 
                outputCharacterArray[i] = CharUpper(inputCharacterArray[i]);
            Console.WriteLine($"Original text is {textToChange}");
            Console.WriteLine($"Changed text is {new string(outputCharacterArray)}");

Let’s build this using:

dotnet build

Let’s publish it for Windows 10 IoT Core devices with an ARM processor using

dotnet publish -r win8-arm

Let’s open a Powershell prompt to our Raspberry Pi 3, create a folder to host this application.

mkdir c:\ConsoleApps\PInvoke

You can ssh to your Raspberry Pi 3 using a Powershell prompt from the Windows IoT Dashboard as shown in the image below:


And now let’s open a command prompt on our development machine, and copy the application binaries to the directory we created on our Raspberry Pi 3 earlier.

robocopy.exe /MIR ".\bin\Debug\netcoreapp2.0\win8-arm\publish" "\\<your-ipaddress-here>\c$\ConsoleApps\PInvoke"

Finally after building, publishing and deploying, we can go back to the ssh PowerShell prompt and run:


And this shows the text has been changed to upper case, as shown below.


Wrapping up

There’s nothing special about this code, it’s all pretty standard PInvoke code – but it’s nice to confirm that it works with .NET Core 2 on the Raspberry Pi 3’s ARM processor under Windows 10 IoT Core.